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Abstract—The growing demands of compute-intensive applica-
tions have led to the emergence of Computing Power Networks
(CPNs), which integrate diverse computing resources across
cloud, edge, and devices for efficient task scheduling and resource
allocation in a network environment. This paper addresses the
critical challenge posed by the dual spatiotemporal dynamics of
tasks and resources, which complicates the optimization process
of task scheduling in CPNs. Our work is the first to systematically
investigate the joint optimization of task scheduling and traffic
routing in green CPNs involving the dual dynamics. We formu-
late the profit maximization problem as an integer nonlinear
programming problem that is NP-hard. To tackle this issue,
we propose a novel deep reinforcement learning based algo-
rithm capable of SpatioTemporal Dynamic Perception (STPer),
which employs Graph Neural Networks(GNN) and Long Short-
Term Memory(LSTM) networks. The STPer algorithm effectively
captures the spatiotemporal dynamics of both resources and
tasks, maximizing platform profits. Extensive simulations demon-
strate that STPer significantly outperforms existing benchmark
algorithms, highlighting its superior performance in optimizing
resource utilization and enhancing profitability in the green CPN.

I. INTRODUCTION

Driven by the growing demands of compute-intensive appli-
cations such as large-scale model and video rendering [1], [2],
the need for massive computing power has become a critical
challenge. To address the increasing demands and performance
requirements, the concept of the Computing Power Network
(CPN) has been proposed as a key technology for the next
generation of networks [3], [4]. CPN aims to integrate and
orchestrate diverse computing resources across the cloud,
edge, and devices, enabling efficient, on-demand scheduling
and allocation of computing power.

Energy consumption has become a critical concern in CPNs.
To address this issue, energy-saving resources, such as hy-
dropower, have been integrated into CPNs (referred to as
green CPNs) which are cheaper and eco-friendly. Computing
service platforms in the CPN manage multiple resource nodes
and serve various kinds of users’ tasks with different Quality
of Service (QoS) requirements by scheduling the tasks to
the computing nodes for processing. Different tasks result
in varying levels of satisfaction upon completion, leading
to differences in task charges [5], [6]. Moreover, computing
nodes have diverse processing capabilities and resource costs,
influenced by factors such as energy supply types and node

performance. The profit of the platform consists of the charges
from the users for task processing and the cost of resource
operating. In this paper, we study the problem of joint opti-
mization of task scheduling and traffic routing in green CPNs
to maximize the platform profit.

We formulate the platform profit maximization problem as
an integer nonlinear programming (INLP) problem which is
NP-hard. However, applying traditional INLP methods to our
problem becomes impractical due to the following challenges:
1) High Dimensionality: The dual spatiotemporal dynamics
of user tasks and resources introduce a massive number of
variables and constraints, making the solution space com-
binatorially large. 2) Dynamic Dependencies: The resource
availability and user demands exhibit complex temporal and
spatial dependencies that cannot be easily captured by static
INLP solutions. 3) Real-Time Requirements: CPNs require
near-instantaneous decision-making to maintain performance
and efficiency, which is beyond the computational feasibility
of solving NP-hard INLP problems iteratively at runtime.
To tackle the above challenges, we propose a GNN and
LSTM-based Reinforcement Learning (RL) algorithm for task
scheduling and traffic routing with SpatioTemporal Dynamic
Perception (STPer). The combination of GNN, LSTM, and RL
allows our system to overcome the limitations of traditional
INLP by scalability and dynamic adaptation.

II. RELATED WORK

Task Scheduling: The task scheduling problem is a hot
research topic in CPNs, aiming to meet certain performance
requirements and system benefits through the optimization of
task scheduling and resource allocation. In [7], the authors
proposed a service intent-aware task scheduling framework
for CPNs, leveraging intent-based networking principles to
enhance task scheduling performance by accounting for ap-
plication service intent and optimizing the integration of
resource orchestration and network control. In [8], the authors
addressed task scheduling for edge inference in CPNs to
minimize long-term costs and proposed adaptive online algo-
rithms with competitive ratio guarantees to handle stochastic
inputs and dynamic resource provisioning. In [9], the authors
proposed a scheduling scheme for ring all-reduce-based dis-
tributed model training requests that optimizes the allocation



of computing and wavelength resources while ensuring relia-
bility and improving training efficiency.

RL in CPN: In dynamically changing environments, rein-
forcement learning can adapt to environmental changes and
adjust strategies to achieve long-term goals. Therefore, in
CPNs, part of the research works employ reinforcement learn-
ing for task scheduling and resource allocation. In [10], the
authors introduced an optimization method based on the multi-
agent soft actor-critic algorithm within a software-defined
networking framework, aimed at enhancing data transmission
efficiency within the CPN by leveraging collaboration among
multiple intelligent agents and employing deep RL to opti-
mize routing paths. In [11], the authors proposed a multi-
dimensional resource matching algorithm based on deep RL,
framing the resource matching process as a Markov decision
process to optimize the allocation of tasks to nodes in CPNs.

In conclusion, current studies on task scheduling optimiza-
tion and RL have certain limitations. From the perspective
of scheduling, existing works only consider partial system
characteristics, lacking a holistic approach to address the
spatiotemporal dynamics and the joint optimization of task
scheduling and traffic routing. From the RL perspective, the
challenge of dual spatiotemporal dynamics remains unre-
solved, which undermines the effectiveness of RL in practical
task scheduling scenarios. To address these gaps, an innovative
RL framework is needed to tackle the joint optimization
problem in CPNs with dual spatiotemporal dynamics.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

Fig. 1 shows the green CPN system under study in this
paper, which consists of a computing service platform, hetero-
geneous computing nodes with different capabilities and users
with different QoS requirement geographically distributed.
Users subscribe computing services from the platform on a
paid basis and offload tasks to the servers according to the
platform’s scheduling decisions. The computing nodes include
cloud computing nodes and edge computing nodes, some
of which are located near hydropower stations and can be
powered by a mix of hydropower and grid electricity. Both
user tasks and computing resources exhibit spatiotemporal
dynamics: user tasks vary with social effects such as work
and rest patterns, while the cost and utilization density of
computing resources change with factors like green energy
supply and user consumption habits. Moreover, these dual
spatiotemporal dynamics are coupled to some extent. The
platform works to schedule the tasks to computing nodes and
route the task in the network to maximize its own profit by
improving the QoS of all tasks and reducing system cost.

The green CPN is modeled as an undirected graph G =
(E ,N ), where E represents link set and N = N∪U represents
the total set of computing node N and end user U . We
use fn to denote the computing power of node n ∈ N
and be to denote the bandwidth capacity of e ∈ E . The
system operates in a time-slotted manner. At each time slot
t, the system works to schedule the tasks generated from

Fig. 1. The system architecture.

each end user u ∈ U to the computing nodes n ∈ N .
A task generated by user u can be represented by a tuple
ξu(t) ≜ ⟨mu(t), ru(t), lu(t)⟩ where mu(t) is the workload,
ru(t) and lu(t) are the packet size in bytes and maximum
latency, respectively. Accordingly, the task set at time slot t
can be denoted by ξ(t) = {ξ1(t), ξ2(t), . . . , ξ|u|(t)}.

B. Delay Model

The delay experienced by a task ξu(t) consists of three
parts: transmission delay, traffic dispatching offset, and com-
putation delay. Let Eξu(t) and Nξu(t) represent the edges and
nodes that the task ξu(t) passes through during transmission,
respectively, then the transmission delay is

ttru (t) =
∑

e∈Eξu(t)

ru(t)

be
+

∑
n∈Nξu(t)

tswn , (1)

where tswn is the forwarding delay of node n. The traffic
dispatching offset refers to the waiting time incurred when
a task ξu(t) is delayed to avoid conflicts with other tasks
that are already utilizing the same transmission edge. We use
toffu (t) to represent the traffic dispatching offset, which will
be detailed in the next subsection D. The computation delay
can be calculated as tcomp

u,n (t) = mu(t)
fn

.
Therefore, the total delay experienced by the task ξu(t) is

tsumu (t) = ttru (t) + toffu (t) + tcomp
u,n (t). (2)

C. System Profit Model

System profit can be defined as the revenue from completing
the task minus the cost of computing services [12]. Specifi-
cally, if the delay of task ξu(t) is tsumu (t) , then the revenue
Ru(t) of completing the task ξu(t) is

Ru(t) = p

(
1 +

η

tsumu (t)

)
mu(t), (3)

where p is the unit price for computing resource and η is a
coefficient. According to Ref. [13], the cost of computing for
task ξu(t) can be calculated as

Eu,n(t) = ie(t)mu(t)f
2
n + it

mu(t)

fn
, (4)

where ie(t) is the electricity price. The first item on the right
hand side represents the computing energy consumption, and
the second item represents the computing power usage cost.
We consider a more realistic situation, that is, some computing



nodes are near green energy supply (such as hydropower
considered in this article), so when calculating the computing
cost, the calculation formula can be supplemented as

Eu,n(t) = ie(t)αn (t)mu(t)f
2
n + it

mu(t)

fn
, (5)

where αn (t) is the price discount of node n due to the supply
of hydropower in time frame t of time cycle T . If αn (t) = 1,
it means there is no hydropower supply, while αi

n (t) = 0, it
means that the power supply is entirely hydropower.

D. Problem Formulation
Let yu,n(t) ∈ {0, 1} indicate whether task ξu(t) is sched-

uled to the node n ∈ N , where yu,n(t) = 1 means the node
n is chosen as the destination node. Each task can only be
scheduled to one node, thus we have

∑
n∈N yu,n = 1,∀u ∈ U.

The chosen node for task ξu(t) is denoted by n∗
u(t) =∑

i∈N yu,i(t)i. Let x{i,j},u(t) ∈ {0, 1} denote whether task
ξu(t) uses the edge {i, j} ∈ E , where x{i,j},u(t) = 1 means
the edge {i, j} is used. Since the task ξu(t) is generated by
node u and ended by node n∗

u(t), we have∑
i∈N,{u,i}∈E

x{u,i},u(t)−
∑

i∈N,{i,u}∈E

x{i,u},u(t) = 1. (6)

∑
i∈N,{n∗

u(t),i}∈E

x{n∗
u(t),i},u(t)−

∑
i∈N,{i,n∗

u(t)}∈E

x{i,n∗
u(t)},u(t) = 1. (7)

For all intermediate nodes forwarding data, we have∑
j∈N,{i,j}∈E

x{i,j},u(t)−
∑

j∈N,{j,i}∈E

x{j,i},u(t) = 0, (8)

where ∀u ∈ U,∀i ∈ N\ {n, n∗
u(t)}. To avoid loops, we have∑

j∈N,{i,j}∈E

x{i,j},u(t) ⩽ 1,∀u ∈ U,∀i ∈ N. (9)

Let b{i,j},u(t) ∈ {x|x ∈ Z, 0 ⩽ x ⩽ ∆t − 1} denote
the beginning time slot of task ξu(t) on edge {i, j} and
o{i,j},u(t) ∈ Z+ state an offset of a time slot as a number
of full length of time cycle ∆t. Thus, a time slot position for
task ξu(t) on edge {i, j} is given by b{i,j},u(t)+o{i,j},u(t)∆t.
The offset variable is used when b{i,j},u(t) is very close to
∆t, and an offset variable is needed to schedule this task to the
next time cycle for transmission. First, for paths that are not
selected as routes, variables b{i,j},u(t) and o{i,j},u(t) should
be 0. So we have

b{i,j},u(t) + o{i,j},u(t) ⩽ Ms · x{i,j},u(t), (10)

where Ms is an arbitrary and sufficiently large constant
(Ms ≫ b{i,j},u(t) + o{i,j},u(t)). Furthermore, the time slot
on the outgoing link must be scheduled later than the time
slot on the incoming link by at least the switching delay tswn
of node n. So for ∀u ∈ U,∀i ∈ N\ {n∗

u(t)} we have∑
j∈N,{i,j}∈E

(
b{i,j},u(t)+o{i,j},u(t)∆t

)
− (11)

∑
j∈N,{j,i}∈E

(
b{j,i},u(t)+o{j,i},u(t)∆t

)
⩾ tswn

∑
j∈N,{i,j}∈E

x{i,j},u(t),

As mentioned above, tasks routed on the same link must not
overlap. Therefore, for two tasks scheduled on the same link
at different time slots, ka and kb, one task must end before
the other starts. Let αi,j,p,q,w,v (t) ∈ {0, 1} be an auxiliary
variable, where ∀ (w, v) ∈ {0, 1}×{0, 1}. For ∀ (p, q) ∈ N ×
N ,∀ {i, j} ∈ E , we have(

b{i,j},q (t) + v∆t
)
−

(
b{i,j},p (t) + w∆t

)
⩾

rp(t)

b{i,j}
−Mr

(
3−αi,j,p,q,w,v (t)−x{i,j},p(t)−x{i,j},q(t)

)
, (12)(

b{i,j},p (t) + w∆t
)
−

(
b{i,j},q (t) + v∆t

)
⩾

rq(t)

b{i,j}
−Mr

(
2+αi,j,p,q,w,v (t)−x{i,j},p(t)−x{i,j},q(t)

)
, (13)

where Mr is an arbitrary and sufficiently large constant.
For ξu(t) ∈ ξ|U |(t), the delay requirement should be

satisfied, we have∑
j∈N,{j,n∗

u(t)}∈E

(
b{j,n∗

u(t)},u(t) + o{j,n∗
u(t)},u(t)∆t

)
−

∑
j∈N,{u,j}∈E

(
b{u,j},u(t) + o{u,j},u(t)∆t

)
⩽ lu(t)− tcomp

u,n∗
u
(t)−

∑
j∈N,{j,n∗

u(t)}∈E

ru(t)

b{j,n∗
u(t)}

x{j,n∗
u(t)},u(t), (14)

where the transmission delay plus the computation delay
should be less than the maximum delay of the task.

Finally, the optimization objective for our problem is to
maximize the system benefit, that is, to maximize the sum
of the task offloading benefits minus the task offloading costs
in all time cycles. It can be formally expressed as

max
∑
t

∑
n∈N

∑
u∈U

yu,n(t)(Ru (t)− Eu,n (t)). (15)

s.t. Eqs. (6)− (14)

Since the decision variables of this problem contain integers
and the variables are nonlinear with respect to the objective
function, this is an integer nonlinear programming problem,
which is an NP-hard problem and difficult to solve. The
problem is further made more difficult by the dynamic nature
of the environment including the spatiotemporal dynamics
of both user tasks and heterogeneous resources, which is
beyond the ability of the traditional optimization algorithms.
To effectively tackle the problem, we propose a novel deep
reinforcement learning based algorithm capable of STPer,
which employs GNN and LSTM networks.

IV. PROPOSED FRAMEWORK

In this section, we propose the STPer algorithm to maximize
the platform profit by jointly optimizing the decision of task
scheduling and traffic routing. The overview of the STPer is
shown in Fig. 2. To address the dual spatiotemporal dynamics,
we design a perception network based on GNN and LSTM to
extract spatiotemporal features as input for the reinforcement
learning framework. Additionally, we develop an iterative
optimization algorithm to solve the traffic routing optimization
problem in the form of cumulative fractional expressions.



Fig. 2. Overview of the proposed STPer.

A. Modeling of Markov Decision Process

Before introducing the details of deep reinforcement learn-
ing, it is necessary to model the problem using a Markov
Decision Process (MDP). The MDP can be represented by a
5-tuple ⟨A,S, R, P, γ⟩, where A is the action space. S is the
state space. R is the reward function. P is the state transition
probability function and γ is the discount factor.

1) Action Space A: At time frame t, The agent needs to
assign each task ξu(t) generated by node n to its destination
n∗
u(t) according to the observation. So, the action space can

be defined as A ≜ ×u∈U{x|x ∈ Z, 1 ≤ x ≤ |N |}.
2) State Space S: As mentioned before, electricity prices,

hydropower generation, computing power requirements of
each node and their spatial distribution will play a decisive
role in decision making, so, the state space can be defined as
S ≜ {ie (t) , αn (t) ,mn (t) , n ∈ N , t ∈ T}.

3) Reward Function R(st, at): The reward function is
similar to Eq. (15), which is the benefit of each time frame
minus the cost, so that the agent is updated in the direction
of maximizing the objective function, that is, R(st, at) =∑

x∈A
∑

u∈U (Ru (t)− Eu,x (t)).
4) State Transfer Function P (st+1|st, at): Since we are

studying a model-free reinforcement learning environment,
there is typically no explicit state transition function.

5) Discount Factor γ: A lower γ prioritizes short-term
rewards, while a higher γ emphasizes the long-term rewards.
Here, γ = 0.99 is adpoted.

B. Feature Extraction Network

1) Spatial Feature Extraction with GNN: To capture the
spatial correlation features of task demands at each node in
the CPN, a GCN with a graph learning module is proposed to
extract these features. First, the adjacency matrix of the graph
G is denoted as A, and the task demand of node n is mapped
to a vector xn od length d using an MLP. The features of these
n nodes are then aggregated into an n × d matrix H(0). The
graph convolution operation at one layer is given by

H(l+1) = σ(D− 1
2AD− 1

2H(l)W ), (16)

where σ(·) is the activation function such as ReLU (·), D is
the degree matrix of A, W represents the trainable parameter
matrix of the current layer convolution transformation.

Here, we input the computing power demands of each node
into the GNN to obtain the spatial correlation features of the
computing power demand.

hg(t) = GNN(m1 (t) , · · · ,m|N | (t) , A). (17)

2) Temporal Feature Extraction with LSTM: Considering
that electricity prices, hydropower generation, and computing
power demand are directly influenced by recent historical
values, this section adopts an LSTM-based information fusion
framework to handle their long-term temporal dependencies.

We input the electricity price ie(t), hydropower generation
αn(t) and user demand mu(t) of each node in each time cycle
into LSTM networks to obtain their hidden representations.

hi (t) = LSTM(ie (t) , hi (t− 1)) , (18)
hα (t) = LSTM(α (t) , hα (t− 1)) , (19)

hr (t) = LSTM
(
m1 (t) ∥ · · · ∥ m|N | (t) , hr (t− 1)

)
, (20)

where ∥ is the concatenation operation.
3) Feature Fusion: In this section, we apply a “concatena-

tion” method to fuse the spatial and temporal features, enhanc-
ing the model’s ability to capture the task demands and elec-
tricity market dynamics. Specifically, the spatial feature hg(t)
and the temporal features hi(t), hα(t), and hr(t) are concate-
nated or aggregated to produce a fused feature representation
hf (t), i.e., hf (t) = hi(t) ∥ hα(t) ∥ hr(t) ∥ hg(t). This fusion
method allows the model to simultaneously leverage infor-
mation from both the spatial and temporal dimensions. After
the feature fusion, the resulting fused representation is further
processed by a MLP to capture higher-level abstract features.
Therefore, the final features are given by h (t) = MLP(hf (t)).

C. Deep Reinforcement Learning

The reinforcement learning framework implemented in
STPer is Proximal Policy Optimization (PPO) [14]. The learn-
ing process of STPer, based on PPO, operates as follows:
First, the current task offloading policy is applied to deter-
mine the destination for each node’s tasks, and a routing
scheduling algorithm is employed to manage task assignments.
Subsequently, the advantage function for the task offloading
policy is computed. To address sampling bias caused by policy
updates, importance sampling is used to adjust the weights
during the training process. Finally, a loss function derived
from the preceding components is utilized to update the
policy. After multiple training iterations, once the offloading
policy stabilizes and shows minimal changes, a convergent
task offloading policy is obtained. Below, we detail the key
functions involved in this process.

The advantage function is defined as Aπ (st, at) =
Qπ (st, at) − Vπ (st), where Qπ (st, at) =
Est+1,at+1,··· [

∑∞
l=0 γ

trt+l] represents the expected profit of
action at in the state of st. Vπ (st) = Eat,st+1,··· [

∑∞
l=0 γ

trt+l]
represents the expected reward of being in the state of st.

To balance bias and variance, STPer employs Generalized
Advantage Estimation (GAE) to compute the advantage func-
tion. GAE is calculated as At =

∑∞
l=0 (γϕ)

l
κV
t+l, where ϕ is



a parameter that balances bias and variance. κV
t+l is computed

using κV
t = rt + γVπ′ (st+1) − Vπ′ (st), where rt represents

the reward obtained by the system for the decision made at
time t. To correct sampling bias introduced by policy updates,
importance sampling weights are used. These weights are
defined as ηθ = πθ(at|st)

π
θ
′ (at|st) , where πθ (at|st) is the updated

policy and πθ′ (at|st) is the policy before the update.
The PPO loss function is defined as Jppo (θ) =

E [min (ηθAπ′ (st, at) , clip (ηθ, 1− δ, 1 + δ)Aπ′ (st, at))],
where clip(·) restricts ηθ to the range 1− δ and 1 + δ.

D. Traffic Routing

Since n∗
u(t) of each task for each node is given in the rein-

forcement learning in the previous subsection, so the objective
function at time cycle t of Eq. (15) can be reformulated as

max
∑
n∈N

∑
u∈U

pη
mu (t)

tsumu (t)
. (21)

Note that this is an objective function in the form of a sum
fraction, so we first use a quadratic transformation to make
it easier to handle. The quadratic transformation of formula∑

n∈N pη mn(t)
tsum
u (t) is

max
∑
n∈N

∑
u∈U

2yu,n
√
pηmu (t)− y2u,nt

sum
u (t), (22)

where ∀yu,n ∈ R is the auxiliary variable. From Ref. [15], we
know that Eq. (21) and Eq. (22) are equivalent. For the solution
of the problem Eq. (22), we use iterative optimization to solve
the problem. First, we fix x,b,o, α, the auxiliary variable yu,n

has an optimal closed-form solution y∗u,n =

√
pηmu(t)

tsum
u (t) ,∀n ∈

N, u ∈ U . Then fix the auxiliary variable yu,n and the problem
is an integer linear programming problem about x,b,o, α,
which can be solved by existing toolboxes such as CVX [16].

V. PERFORMANCE EVALUATION

In this section, we use real-world electricity price [17] and
hydropower generation [18] datasets to validate the effec-
tiveness of the proposed STPer by comparing it with other
baseline algorithms. To verify the spatiotemporal correlation
of electricity prices, hydropower generation, and computing
power demand, ablation experiments are conducted to analyze
the effectiveness of different feature extraction modules.

A. Simulation Setup

We implemented the STPer framework using Python, with
the reinforcement learning environment developed using the
Gymnasium library [19]. In the simulation, the number of
computing nodes is 10. The computing power fn of node n is
randomly chosen in [1, 10] TFLOPs. The bandwidth capacity
de of link e is randomly chosen in [10, 50]Mb/s. The packet
size ru(t) of a task ξu(t) is 5Mb and the latency requirement
is 2s. According to [20], the unit price p is 0.5 and η is 2. it
is 0.2. The workload of each user is a trigonometric function
with time as the independent variable plus a Gaussian random
variable. The following baseline algorithms are chosen.
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Fig. 3. The cumulative reward and explained variance (EV) of the value
function across time steps for each model during training.
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Fig. 4. Impact of computing power in average delay.

• STPer-L: Remove the GNN module and only use the
time series information of electricity price, hydropower
generation and task demand to make decisions.

• STPer-M: Remove the GNN and LSTM modules and
make decisions without extracting the spatiotemporal
correlation between electricity prices, hydropower gen-
eration and task demand.

• Random: Making decisions by random scheduling and
routing without any optimization.

B. Analysis of Reward and Explained Variance

First, we analyze the relationship between the cumulative
reward and explained variance (EV) across the training process
for each algorithm. The results are as shown in Fig. 3.
STPer outperforms the other algorithms in terms of cumulative
reward while with a lower explained variance than STPer-
L. This suggests that STPer’s exploration-exploitation balance
is more effective, allowing it to maximize long-term rewards
despite not perfectly fitting the value function. In contrast,
STPer-L with an explained variance close to 1, appears to
overfit the training data, leading to lower generalization and,
consequently, suboptimal rewards.

C. Varying the Computing Power of the Nodes

In Fig. 4, the average delay of all algorithms is evaluated
with varying computing power ranging from 10 to 50 TFLOPs.
It can be seen that as computing power increases, the average
task delay decreases significantly. Specifically, at low com-
puting power, delays are relatively high, but as computing
power increases, the task delay reduces substantially. This
indicates that when the computing capability is limited, the
algorithm requires more time to complete tasks, but with
increased computational resources, the task processing speed
improves, resulting in reduced delays. The performance of
different algorithms varies under the same computing power
configuration. In the same configuration, STPer performs the
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best, while STPer-M only slightly outperforms the random
approach. In Fig. 5, the system profit of all algorithms is
further evaluated with varying computing power. It can be
observed that all algorithms have the same trend that as the
node computing power increases, the system profit of all
algorithms also increases. This is because, with the increase in
node computing power, task delays decrease, and the resulting
benefits outweigh the increase in system costs due to the
higher computing power, leading to an overall increase in
system profit which is verified in the result trend in Fig. 4 .
In the same configuration, STPer achieves the highest system
profit, while STPer-M only slightly outperforms the random
approach, which demonstrates the efficiency of STPer.

D. Varying the Data Size of the Tasks

The impact of varying data size of the task on system
benefit is evaluated with the data size ranging in [15,45]
Mb. As shown in Fig. 6, it can be seen that the system
benefit resulted from all the algorithms decreases as the
data size increases. This is because the increased data size
incurs improved transmission delay, which results in the task
value declining. Among all the algorithms, STPer achieves the
highest system benefit, while Random achieves the lowest with
varying data size, which shows the robustness of STPer.

VI. CONCLUSION

In this paper, we addressed the critical challenges posed
by spatiotemporal dynamics in computing power networks.
The profit maximization problem was formulated as an NP-
hard integer nonlinear programming problem. To tackle this,
we proposed a novel deep reinforcement learning algorithm,
STPer, which leverages GNN and LSTM networks to effec-
tively capture the spatiotemporal dynamics of both resources
and tasks. Additionally, we designed an iterative optimization
algorithm to solve the traffic routing problem, expressed
as cumulative fractional equations. Extensive experiments
demonstrate the superiority of the proposed STPer algorithm
compared to baseline methods.
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